The combination of all the strengths, attributes and resources available within a community, society or organization that can be used to achieve agreed goals.

Capacity may include infrastructure and physical means, institutions, societal coping abilities, as well as human knowledge, skills and collective attributes such as social relationships, leadership and management. Capacity also may be described as capability. Capacity assessment is a term for the process by which the capacity of a group is reviewed against desired goals, and the capacity gaps are identified for further action.

Climate change

  • The Inter-Governmental Panel on Climate Change (IPCC) defines climate change as: “a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use”.
  • The United Nations Framework Convention on Climate Change (UNFCCC) defines climate change as “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods”.


A serious disruption of the functioning of a community or a society involving widespread human, material, economic or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using its own resources.

Disasters are often described as a result of the combination of: the exposure to a hazard; the conditions of vulnerability that are present; and insufficient capacity or measures to reduce or cope with the potential negative consequences. Disaster impacts may include loss of life, injury, disease and other negative effects on human physical, mental and social well-being, together with damage to property, destruction of assets, loss of services, social and economic disruption and environmental degradation.

Disaster risk

The potential disaster losses, in lives, health status, livelihoods, assets and services, which could occur to a particular community or a society over some specified future time period.

The definition of disaster risk reflects the concept of disasters as the outcome of continuously present conditions of risk. Disaster risk comprises different types of potential losses which are often difficult to quantify. Nevertheless, with knowledge of the prevailing hazards and the patterns of population and socio-economic development, disaster risks can be assessed and mapped, in broad terms at least.

Disaster risk management

The systematic process of using administrative directives, organizations, and operational skills and capacities to implement strategies, policies and improved coping capacities in order to lessen the adverse impacts of hazards and the possibility of disaster.

This term is an extension of the more general term “risk management” to address the specific issue of disaster risks. Disaster risk management aims to avoid, lessen or transfer the adverse effects of hazards through activities and measures for prevention, mitigation and preparedness.

Disaster risk reduction

The concept and practice of reducing disaster risks through systematic efforts to analyse and manage the causal factors of disasters, including through reduced exposure to hazards, lessened vulnerability of people and property, wise management of land and the environment, and improved preparedness for adverse events.

A comprehensive approach to reduce disaster risks is set out in the United Nations-endorsed Hyogo Framework for Action, adopted in 2005, whose expected outcome is “The substantial reduction of disaster losses, in lives and the social, economic and environmental assets of communities and countries.” The International Strategy for Disaster Reduction (ISDR) system provides a vehicle for cooperation among Governments, organizations and civil society actors to assist in the implementation of the Framework. Note that while the term “disaster reduction” is sometimes used, the term “disaster risk reduction” provides a better recognition of the ongoing nature of disaster risks and the ongoing potential to reduce these risks.


The lessening or limitation of the adverse impacts of hazards and related disasters.

The adverse impacts of hazards often cannot be prevented fully, but their scale or severity can be substantially lessened by various strategies and actions. Mitigation measures encompass engineering techniques and hazard-resistant construction as well as improved environmental policies and public awareness. It should be noted that in climate change policy, “mitigation” is defined differently, being the term used for the reduction of greenhouse gas emissions that are the source of climate change.

Natural hazard

Natural process or phenomenon that may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage.

Natural hazards are a sub-set of all hazards. The term is used to describe actual hazard events as well as the latent hazard conditions that may give rise to future events. Natural hazard events can be characterized by their magnitude or intensity, speed of onset, duration, and area of extent. For example, earthquakes have short durations and usually affect a relatively small region, whereas droughts are slow to develop and fade away and often affect large regions. In some cases, hazards may be coupled, as in the flood caused by a hurricane or the tsunami that is created by an earthquake.


The knowledge and capacities developed by governments, professional response and recovery organizations, communities and individuals to effectively anticipate, respond to, and recover from, the impacts of likely, imminent or current hazard events or conditions.

Preparedness action is carried out within the context of disaster risk management and aims to build the capacities needed to efficiently manage all types of emergencies and achieve orderly transitions from response through to sustained recovery. Preparedness is based on a sound analysis of disaster risks and good linkages with early warning systems, and includes such activities as contingency planning, stockpiling of equipment and supplies, the development of arrangements for coordination, evacuation and public information, and associated training and field exercises. These must be supported by formal institutional, legal and budgetary capacities. The related term “readiness” describes the ability to quickly and appropriately respond when required.


The outright avoidance of adverse impacts of hazards and related disasters.

Prevention (i.e. disaster prevention) expresses the concept and intention to completely avoid potential adverse impacts through action taken in advance. Examples include dams or embankments that eliminate flood risks, land-use regulations that do not permit any settlement in high risk zones, and seismic engineering designs that ensure the survival and function of a critical building in any likely earthquake. Very often the complete avoidance of losses is not feasible and the task transforms to that of mitigation. Partly for this reason, the terms prevention and mitigation are sometimes used interchangeably in casual use.



The restoration, and improvement where appropriate, of facilities, livelihoods and living conditions of disaster-affected communities, including efforts to reduce disaster risk factors.

The recovery task of rehabilitation and reconstruction begins soon after the emergency phase has ended, and should be based on pre-existing strategies and policies that facilitate clear institutional responsibilities for recovery action and enable public participation. Recovery programmes, coupled with the heightened public awareness and engagement after a disaster, afford a valuable opportunity to develop and implement disaster risk reduction measures and to apply the “build back better” principle.


The ability of a system, community or society exposed to hazards to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions.

Resilience means the ability to “resile from” or “spring back from” a shock. The resilience of a community in respect to potential hazard events is determined by the degree to which the community has the necessary resources and is capable of organizing itself both prior to and during times of need.


The provision of emergency services and public assistance during or immediately after a disaster in order to save lives, reduce health impacts, ensure public safety and meet the basic subsistence needs of the people affected.
Disaster response is predominantly focused on immediate and short-term needs and is sometimes called “disaster relief”. The division between this response stage and the subsequent recovery stage is not clear-cut. Some response actions, such as the supply of temporary housing and water supplies, may extend well into the recovery stage.

Risk assessment

A methodology to determine the nature and extent of risk by analysing potential hazards and evaluating existing conditions of vulnerability that together could potentially harm exposed people, property, services, livelihoods and the environment on which they depend.
Risk assessments (and associated risk mapping) include: a review of the technical characteristics of hazards such as their location, intensity, frequency and probability; the analysis of exposure and vulnerability including the physical social, health, economic and environmental dimensions; and the evaluation of the effectiveness of prevailing and alternative coping capacities in respect to likely risk scenarios. This series of activities is sometimes known as a risk analysis process.

Risk management

The systematic approach and practice of managing uncertainty to minimize potential harm and loss.

Risk management comprises risk assessment and analysis, and the implementation of strategies and specific actions to control, reduce and transfer risks. It is widely practiced by organizations to minimise risk in investment decisions and to address operational risks such as those of business disruption, production failure, environmental damage, social impacts and damage from fire and natural hazards. Risk management is a core issue for sectors such as water supply, energy and agriculture whose production is directly affected by extremes of weather and climate.


Socio-natural hazard

The phenomenon of increased occurrence of certain geophysical and hydrometeorological hazard events, such as landslides, flooding, land subsidence and drought, that arise from the interaction of natural hazards with overexploited or degraded land and environmental resources.

This term is used for the circumstances where human activity is increasing the occurrence of certain hazards beyond their natural probabilities. Evidence points to a growing disaster burden from such hazards. Socio-natural hazards can be reduced and avoided through wise management of land and environmental resources.


The characteristics and circumstances of a community, system or asset that make it susceptible to the damaging effects of a hazard.

There are many aspects of vulnerability, arising from various physical, social, economic, and environmental factors. Examples may include poor design and construction of buildings, inadequate protection of assets, lack of public information and awareness, limited official recognition of risks and preparedness measures, and disregard for wise environmental management. Vulnerability varies significantly within a community and over time. This definition identifies vulnerability as a characteristic of the element of interest (community, system or asset) which is independent of its exposure. However, in common use the word is often used more broadly to include the element’s exposure.

For further information, please Click here